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Abstract

The experimental demonstration that neutrons can reside in gravitational
quantum stationary states formed in the gravitational field of the Earth
indicates a need to examine in more detail the general theoretical properties
of gravitational eigenstates. Despite the almost universal study of quantum
theory applied to atomic and molecular states, very little work has been done
to investigate the properties of the hypothetical stationary states that should
exist in similar types of gravitational central potential wells, particularly those
with large quantum numbers. In this first of a series of papers, we attempt to
address this shortfall by developing analytic, non-integral expressions for the
electromagnetic dipole state-to-state transition rates of charged particles for
any given initial and final gravitational quantum states. The expressions are
non-relativistic and hence valid provided the eigenstate wavefunctions do not
extend significantly into regions of strong gravity. The formulae may be used
to obtain tractable approximations to the transition rates that can be used to
give general trends associated with certain types of transitions. Surprisingly,
we find that some of the high angular momentum eigenstates have extremely
long lifetimes and a resulting stability that belies the multitude of channels
available for state decay.

PACS numbers: 03.65.Ge, 03.67.Lx, 03.65.Db, 04.60.−m, 95.35.+d, 04.90.+e

1. Introduction

The bound stationary states of electrons in atoms have been studied extensively for many
years but little has been done to investigate the properties of neutral or charged particles
occupying the hypothetical stationary states in gravitational potential wells. This is important
because there are no strong scientific grounds to deny the existence of gravitationally bound
quantum eigenstates (including macroscopic ones) and also because recent experimental work
by Nesvizhevsky et al [1, 2] has demonstrated the physical reality of such gravitational quantum

1751-8113/09/115207+16$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/11/115207
mailto:aernest@csu.edu.au
http://stacks.iop.org/JPhysA/42/115207


J. Phys. A: Math. Theor. 42 (2009) 115207 A D Ernest

stationary states in the Earth’s gravitational field. It is interesting therefore to speculate on
whether it might be theoretically possible for relatively pure stationary gravitational eigenstates
to exist naturally elsewhere in the universe. If such states were to exist, it would clearly be
important to have theoretical information on their expected properties.

This paper aims to set up a simple quantum model using a central gravitational point
potential, derive its set of hypothetical gravitational eigenstates and begin an analysis of the
properties and interactions of some of these states. Specifically we develop formulae for the
form of the dipole-allowed state-to-state transition rates in the general case of charged particles
occupying stationary states with arbitrarily large quantum numbers. Although mathematically
the eigenstates of such a system are theoretically analogous to those of an equivalently bound
electrical system such as the hydrogen atom, differences in the sizes of the quantum numbers
and scales involved, combined with the unusual properties of the eigenfunctions themselves,
result in some of the gravitational eigenstates having unusual and unexpected properties.
Deriving these properties and understanding reasons for the differences between the atomic
and gravitational cases is often not trivial. The long-term aim is to determine under what
conditions long-lived, relatively stable, gravitational eigenstates can exist, and further, to make
predictions about the properties of possible (necessarily large scale) hypothetical structures
composed of an ensemble of such states. If such relatively pure gravitational eigenstates
do exist in the universe then it is possible that they could have significant consequences for
astronomy [3, 4].

The simplest realistic gravitational system consists of a symmetric potential produced
by a sufficiently large mass M so as to have well bound eigenstates occupied by particles of
atomic mass scales. We therefore consider the gravitational quantization of a small particle
mass mp (� M) in the point potential field provided by the large, electrically neutral mass
M. To simplify matters further we consider the states whose radial extents are limited and
have appreciable amplitude only over regions which are sufficiently distant from the centre
of M so that the gravitational field is weak enough to ignore relativistic effects. Under these
conditions the Schrödinger equation is trivially analogous to that for the hydrogen atom and
may be written as

− h̄2

2μ
∇2ψ − GmpM

r
ψ = ih̄

∂ψ

∂t
(1)

where μ is the reduced mass and the other symbols have their normal meanings.
The solutions are likewise analogous to those of the hydrogen atom and may be

immediately written down, the eigenvalues En being

En = −μG2m2
pM2

2h̄2n2
. (2)

With the introduction of the parameter b0 = h̄2

GμmpM
, the corresponding eigenfunctions

un(r, t) are

un,l,m(r, t) = Rn,l(r)Yl,m(θ, φ) (3)

where Yl,m(θ, φ) are the normalized spherical harmonics and

Rn,l(r) = Nn l

(
2r

nb0

)l

exp

(
− r

nb0

)
L2l+1

n−l−1

(
2r

nb0

)
. (4)

In equation (4), Nn l = {( 2
nb0

)3 (n−l−1)!
2n (n+l)!

} 1
2 is a normalizing constant and

L2l+1
n−l−1

(
2r

nb0

)
= (n + l)!

n−l−1∑
k=0

(−1)k+2l
(

2r
nb0

)k
(n − l − 1 − k)!(2l + 1 + k)!k!

(5)

are the generalized Laguerre polynomials in their standard form.
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In most traditional situations where a quantum approach would be anticipated, the resulting
eigenstate binding energies are unrealistically small because the gravitational force is relatively
very weak. For example the binding energies En of two neutrons (ignoring spin) is much smaller
(e.g. E1 ∼ 10−69 eV) than the magnitude of typical random background field fluctuations (e.g.
E ∼ 10−4 eV for cosmic microwave background radiation). The binding energy increases with
larger masses, but for small quantum numbers the physical extent of the quantum probability
density distribution can become much smaller than the corresponding quantum probability
distributions of the individual isolated masses themselves making up the structure (M ∼
m ∼ 10−13 kg implies an n = 1 eigenstate ‘size’ of ∼10−19 m compared to a typical ‘size’ for
the individual 10−13 kg masses of ∼10−5 m for a mass density ∼1 kg m−3). The two-particle
gravity-only Schrödinger equation is inapplicable in this situation since the interactive effects
of the electron clouds in the two masses would then dominate. We therefore consider the
theoretical description and properties of very large, possibly macroscopic, stationary, well-
bound states that correspond to large quantum numbers in the (relatively) weak regions of
deep gravitational wells.

The notion of large quantum states and macroscopic quantum phenomena is not new.
Bose–Einstein condensates, superconducting quantum interference devices and the many
experiments involving quantum connectedness all demonstrate the existence of macroscopic
quantum phenomena [5–8]. Of course there are understandable reasons for certain quantum
phenomena, such as interference effects, not occurring on large scales. In the case of quantum
interference, for example, background electromagnetic or gravitational field fluctuations will
generally produce interactions that result in decoherence on macroscopic scales. However
these only introduce randomly phase shifts that occur independently to the individual members
of a quantum connected pair of virtual states [9] thereby destroying the quantum coherence
and the subsequent interference. There is no experimental evidence that this type of
macroscopic decoherence should result in the indiscriminate rejection of all macroscopic
quantum phenomenon.

Not only will we be concerned with high-M and high-n values, but also the relatively
high angular momentum states (high-l relative to n) because for these states the radial extent
of the probability density ‘shell’ can be relatively limited (and conversely, low-l relative to
n implies large radial eigenfunction spread). When the central mass is small, then, as the
n value increases, the binding energy becomes too weak for effective binding. This occurs
long before the effective position of a high-l eigenstate is able to outstrip the physical size
of the central mass M in question, but can be easily achieved if the central mass is large
enough. The lowest central mass limit at which this phenomenon becomes feasible depends
on the assumed density of the central mass and on the critical value that one adopts as an
‘effective’ binding energy. However, for realistic mass densities of 100–102 kg m−3, and
a lower limit binding energy of around 1 eV (i.e. En � average background CMB photon
energy) the required central mass M is of the order of 1030 kg. This explains the difficulty in
producing or observing gravitational eigenstates on laboratory or microscopic scales. It is of
interest to note that the binding energies of the neutrons observed in the work of Nesvizhevsky
et al (quantized in an asymmetric wedge potential of a ‘hard’ mirror and the Earth’s (M <

1025 kg) gravitational field rather than a central spherically symmetric one) had binding
energies of only 1.4–4.1 peV for n = 1 to 4 yet demonstrated relatively large ‘sizes’ by
traditional quantum standards (∼0.05 mm for n = 4) [2].

The solutions to (1) are not trivially dealt with by analogy with those of the hydrogenic
wavefunctions because of the necessarily large quantum numbers involved in the formation
of energetically realistic gravitational eigenstates. Any interaction properties that depend on
the relative energy level spacing and the overlap integrals of states involved can be drastically
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Figure 1. Schematic representing the high n-, l-, m-valued stationary states, drawn to emphasize
the parameter p ≡ n − l. Each solid circle on the diagram represents 2l + 1 z-projection substates.

different from those properties resulting from low-n quantum state overlap integrals. Large
quantum number wavefunctions of electrically bound electrons in hydrogen need to be rarely,
if ever, considered in the atomic case because their binding energies are too small to remain
stable and bound for any reasonable length of time. Describing and dealing with states
having high-n, l, m values is therefore a primary goal of the present work. When n is large the
complexity of the individual states and the number of available eigenstate transitions makes the
general study of the intrinsic properties and interaction rates of any large array of gravitational
eigenstates (referred to from now on as an ‘eigenstructure’) extremely difficult.

We introduce a schematic (figure 1) showing the traditional quantum parameters n, l and
m. As with the atomic case, the total angular momentum parameter l and its z-projection
sub-levels m, range from 0 to n − 1 and −l to l respectively. Vertical lines represent states of
constant l and horizontal lines states of constant n. Each solid circle in figure 1 represents the
2l + 1 gravitational z-projection sublevels. It is convenient to introduce a quantity p (≡ n − l)
that then ranges from 1 to n. The reason for this is that it will turn out that the states of interest
here will have p values that are small relative to n and formulae for these eigenfunctions are
more conveniently written in terms of p. The diagonal dotted lines of figure 1 represent lines
of constant p and states lying on one of these diagonal lines all share a common p value,
beginning with p = 1 on the leftmost diagonal. The parameter p reflects the general spatial
profile of the radial eigenfunction component: p = 1 corresponds to a single-peaked, radial
eigenfunction component with no zeros; p = 2 to a two-peaked, one-zero function; p = 3 to a
three-peaked, two-zero function and so on.
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(a)

(b)

Figure 2. (a) Peaks in the radial-polar density profile reflect the values of p and l − m + 1.
b0 = 1, n = 45; (i) p = 15, l − m + 1 = 6; (ii) p = 15, l − m + 1 = 21; (iii) p = 5, l − m + 1 =
30. (b) Radial ‘thickness’ of density function decreases with decreasing p. b0 = 1, n = 50, m = 3;
(i) p = 10, (ii) p = 3, (iii) p = 1.

To aid the physical understanding of the behaviour of large quantum-valued eigenstates
we end this introduction by giving examples of the eigenfunction probability functions
u∗

n(r, t) un(r, t) of typical gravitational systems for instructive n, l, m values (essentially a
revision of traditional hydrogenic systems) and note some relevant features. The spherical
harmonic components Yl,m(θ, φ) of the eigenfunctions are explicitly given by

Yl,m(θ, φ) = (−1)m

2l l!

√
2l + 1

4π

(l − m)!

(l + m)!
(sin θ)m eimφ

l∑
k=0

(−1)l−kl!

k!(l − k)!

(2k)!(cos(θ))2k−l−m

(2k − l − m)!
.

(6)

The azimuthal dependence on φ involves only functions of the form e±i mφ and as with
the atomic case, gravitational eigenfunctions result in probability density functions that are
completely delocalized in the φ direction. Hence, one simple representation of the density
functions of the stationary states presents them as three-dimensional revolutions around the
θ = 0 axis of two dimensional r, θ polar coordinate plots shown here by defining a radial-
polar probability surface density associated with the probability of finding a particle between
(r, r θ ) and (r + dr, r(θ + dθ)) as d2P

dr dθ
= ∫ 2π

0
d3P
dV

dφ (where dV ≡ infinitesimal volume
element). Examples of the radial-polar probability density dependence on n, l, m may then
be drawn (taking an arbitrary scale parameter b0 = 1) as in figure 2. They are shown here to
emphasize that (a) the number of peaks in the density function in the radial and polar directions
is given by p and (l – m + 1) respectively and (b) the radial ‘thickness’ or extent of the state
probability density reduces with decreasing p. We also note the other well-known hydrogenic
eigenfunction properties that the average radial position of the density function increases as
n increases and also that, for a given normalized set of states with the same n, l values, the
summed probability density over all possible m values gives a symmetric distribution whose
integral over all space is 2l + 1. For arrays covering sufficiently large n and l values, the sum
over a sparsely populated set of m states will also show spherical symmetry provided that
the occupancy is randomly distributed. The degree of localization in the r and θ directions
varies with values of m and l but, predictably, none show the degree of localization exhibited
by traditional orbiting particles. It is clear that the quantum representation of any spatially
localized orbiting particle in terms of the eigenstate array will necessarily involve a summation
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over many eigenstates and that the tighter the localization constraint the more expansive is the
required set of eigenfunctions.

For large quantum numbers, calculation of the various overlap integrals for spontaneous
dipole decay is particularly difficult and it is useful to derive non-integral formulae for these
which in turn lead to more manageable formulae for calculating state-to-state transition rates
and ultimately state lifetimes. This is done in section 2. Despite the more manageable forms of
the non-integral formulae for dipole decay, it becomes necessary to introduce approximations
for specific cases. One case of relevance to the present work is that where one or more of the
states have a p quantum value of 1 (see figure 1). Section 3 deals with the development of two
useful approximate formulae which enable calculations for these types of transitions. Lastly
we conclude with a discussion of the findings of this paper, their relevance to speculations
on the existence of naturally occurring gravitational eigenstates in the universe, and the need
for the development of further approximations that will be the subject of another companion
paper.

2. Exact non-integral state-to-state transition rate formulae

The interactive properties of particles in gravitational eigenstates will be determined by an
overlap integral involving a relevant interaction potential. It is not possible in the present
treatment to cover all possible types of interaction potentials. In the atomic case the most
basic questions concern the stability and decay of the electronic states. We therefore restrict
attention initially in this paper to the calculation of decay rates and the intrinsic stability of
the states. Subsequently it will be shown in later papers that the mechanisms determining
some of the important properties of certain of the states discussed here are also applicable to
more general interactions because of intrinsic characteristics of the eigenstates themselves, and
are not greatly dependent on the form of the interaction potential that is part of the overlap
integral. State-to-state transition rates and state decay rates may therefore enable the estimation
of rates for other types of interactions as well.

The central mass is assumed neutral so that eigenstate radiative decay takes place via
emission of either gravitational radiation or, if the eigenstate particle is charged, a combination
of gravitational and electromagnetic radiation. It has been shown [4] that for the typical
conditions considered here radiative decay through gravitational radiation is insignificant
compared to that produced through electromagnetic dipole decay. We therefore derive
formulae for the state-to-state electromagnetic dipole decay rates that would be applicable,
for example, to the two most stable particles, the electron and proton in various eigenstate
configurations.

If the eigenstructure is sufficiently densely occupied, then fields of the eigenstate particles
themselves will also contribute significantly to the potential as seen by any individual eigenstate
particle. However in a regular eigenstructure array with equal numbers of alternating positive
and negative charges, it may be shown that, from a classical perspective [4], the electromagnetic
component of the potential felt by an individual charge will, for a large central mass and
low particle densities like those encountered in some interesting astrophysical situations,
be negligible compared to the gravitational potential. For example, consider the charged
eigenstate particle in (1) to have charge q and be embedded in a uniform array of other
positive and negative charges qj (= ±q), then the electrical contribution Vq to the potential
energy term from these other charges maybe estimated from the analogous solid-state formula
Vq = 1/4πε0

∑
j (q qj/rj ) = αq2/4πε0s where rj is the distance to each of the other

alternating charges, α is the Madelung constant and s is an average separation distance
(analogous to a lattice constant). For typical present-day galactic halo conditions where the
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average occupied proton/electron particle eigenstate density is ∼106 m−3 and the central mass
∼1042 kg, the above formula gives the electrostatic potential energy of a typical proton as
∼1010 times smaller than its gravitational potential energy. Limits on the assumption of a
neutral central mass M may be obtained by comparing the gravitational potential energy term
in (1) with an electrical potential energy term Vq when the central/enclosed mass M has a
net charge Q, for a proton in a typical eigenstate. In this case these terms are GMm/r and
Qq/4πε0r respectively. Substituting typical halo values of M ∼ 1042 kg and r ∼ 1021 m shows
that the central mass M would need to have a net charge Q ∼ 1014 C for the electrical potential
energy term to be of comparable magnitude to the gravitational energy term. The existence of
such large charge displacements within the galaxy would seem unlikely, but this comparison
provides a figure for determining a limit on the validity of the neutrality assumption in terms
of the overall galactic charge displacements in the present treatment.

In the present work therefore we ignore any electrical contribution from the charged
eigenstate particles themselves to the overall potential as seen by any one particle and also
take the central mass M as neutral, subject to the limitations on this as expressed above.
Furthermore as regards to eigenstate particles’ global contribution to the gravitational potential,
since we will be looking predominantly at high n, l states where the thickness of their shell-like
radial probability distributions is relatively small, the total effect on the potential of the other
eigenstate particles may, in this case, be incorporated into an effective net central gravitational
potential, analogous to that used in the Hartree–Fock approximation in atomic physics. The
condition that this net central potential is weak over the physical extent of the eigenstate is
given by the general condition for weak gravity ε ≡ GM/rc2 � 1. For particles in the region
of a typical galactic halo for example, M ∼ 1042 kg and r ∼ 1021 m, giving ε ∼ 10−6, so that
this condition is well satisfied. Since halo density scales as 1/r2, M scales directly with r and
this condition is satisfied at lower r as well, until for r ∼ 1014 m, and typical central galactic
black hole mass of 1038 kg, ε ∼ 10−3. Thus for the low-p (<1010), high-n (>1031) eigenstates
considered here, whose radial extents are <1010 m, and whose radial positions begin at an r
at least as large as r ∼ 1016 (� 1014), the condition of weak gravity, the 1/r approximation
to the variation of potential and the neutrality condition discussed above, are simultaneously
satisfied.

The state-to-state transition probability for radiative dipole decay Ai,f (≡ Einstein A
coefficient)1 is analogous to the atomic case. For a transition ni → nf from an initial state |i〉
to the final state |f 〉, this is [10]

Ai,f = ω3
if |〈f |e r|i〉|2

3ε0πh̄c3
= ω3

if 
2
if

3ε0πh̄c3
(7)

where e is the electronic charge, ε0 is the electrical permittivity of free space, |〈f |e r|i〉| = 
if

is the absolute value of the dipole matrix element for spontaneous decay for the transition i to
f, ωif = (

μG2m2
pM2

/
(2 h̄2)

)(
1
/
n2

f − 1
/
n2

i

)
is the angular frequency corresponding to the

transition i to f, μ is the reduced mass and the other symbols have their normal meanings. For
a state i with multiple decay channels, the reciprocal state lifetime 1/τi is then the decay rate
sum over all possible decay channels k: 1/τi = Ai =∑k Ai,k .

In calculating 1/τi there are two problems: the number of transitions k that must be
summed over may be extensive for some states, and it may be very difficult to calculate

if (≡ 
ik) for the particular |i〉 and |k〉involved in each of the individual Ai,k . (ωik may
be calculated from the eigenvalues in a straightforward manner however.) Explicitly 
if is

1 Higher order decays show similar trends to that of dipole decay but rates are several orders of magnitude smaller
for each corresponding unit increase in multi-pole order.
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written as


if =
∣∣∣∣
∫ ∞

0

∫ π

0

∫ 2π

0
R∗

nf,lf Y ∗
lf,mf erRni,li Yli,mi r

2 sin2(θ) cos(φ) dφ dθ dr

∣∣∣∣
=
√(


2
if x + 
2

ify + 
2
if z

)
(8)

where 
if x,
ify and 
if z are the x, y and z components of the vector inside the modulus in (8).
Dipole radiative decay occurs via transitions involving �m = 0 (implying 
if x = 
ify = 0)
or �m = ±1 (implying 
if z = 0) and �l = ±1 (implying transitions must take place
between adjacent l columns in figure 1).


if x,
ify and 
if z may explicitly be written as


if x =
∫ ∞

0

∫ π

0

∫ 2π

0
R∗

nf,lf Y ∗
lf,mf e r Rni,li Yli,mir

2 sin(θ) cos(φ) sin(θ) dφ dθ dr

= e

∫ ∞

0
R∗

nf,lf r3 Rni,li dr

∫ π

0

∫ 2π

0
Y ∗

lf,mf Yli,mi sin(θ) cos(φ) sin(θ) dφ dθ

≡ eIRIθφx (9)


ify =
∫ ∞

0

∫ π

0

∫ 2π

0
R∗

nf,lf Y ∗
lf,mf erRni,li Yli,mi r

2 sin(θ) sin(φ) sin(θ) dφ dθ dr

= e

∫ ∞

0
R∗

nf,lf r3Rni,li dr

∫ π

0

∫ 2π

0
Y ∗

lf,mf Yli,mi sin(θ) sin(φ) sin(θ) dφ dθ

≡ eIRIθφy (10)


if z =
∫ ∞

0

∫ π

0

∫ 2π

0
R∗

nf,lf Y ∗
lf,mf erRni,li Yli,mi r

2 cos(θ) sin(θ) dφ dθ dr

= e

∫ ∞

0
R∗

nf,lf r3 Rni,li dr

∫ π

0

∫ 2π

0
Y ∗

lf,mf Yli,mi cos(θ) sin(θ) dφ dθ

≡ eIRIθφz (11)

where we have further split the integrals into their radial
(
IR ≡ ∫∞

0 R∗
nf,lf (r)Rni,li (r)r

3 dr
)

and angular (Iθφx ≡ ∫ π

0

∫ 2π

0 Y ∗
lf,mf Yli,mi sin(θ) cos(φ) sin(θ) dθ dφ, etc) components.

Explicit formulae for the radial and angular integrals in (9), (10) and (11) may be then
obtained using (4) and (6) respectively.

The explicit forms of the angular integrals Iθφx , Iθφy and Iθφz vary depending on whether
�m is +1, −1 or 0 and whether �l is +1 or −1. We briefly show here the technique for
derivation of the case where the initial state is Yli,mi = Yl,m and final state is Ylf,mf = Yl−1,m,
that is the combination �m = 0 and �l = −1, derivation of the other combinations following
along similar lines. In this case, Iθφx and Iθφy are zero and we need only calculate Iθφz,∫ π

0

∫ 2π

0 Y ∗
lf,mf Yli,mi cos(θ) sin(θ) dϕ dθ . Assuming for the moment that l and m are both even,

using Rodrigues’ formula and the binomial theorem, and adjusting the summation limits
appropriately, gives the initial state Yli,mi = Yl,m as

Yl,m = (−1)(m)

√
(2l + 1)

4π

(l − m)!

(l + m)!
(sin θ)m eimφ

×
⎧⎨
⎩

(l−m)/2∑
ki=0

[
(−1)ki

(2l − 2ki)!(cos θ)(l−2ki−m)

2l (l − 2ki − m)!(l − ki)!ki!

]⎫⎬
⎭ (12)
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and the final state Ylf,mf = Yl−1,m as

Yl−1,m = (−1)(m)

√
(2l − 1)

4π

(l − m − 1)!

(l + m − 1)!
(sin θ)m eimφ

×
⎧⎨
⎩

(l−m−1)/2∑
kf =0

[
(−1)kf

(2l − 2kf − 2)!(cos θ)(l−2kf −m−1)

2l−1(l − 2kf − m − 1)!(l − kf − 1)!kf !

]⎫⎬
⎭ , (13)

where it is understood that the summation variables extend only to floor integer values for
limits which become half integer. Iθφz then becomes∫ 2π

0

∫ π

0

(√
(2l + 1)

4π

(l − m)!

(l + m)!
(sin θ)m eimφ

√
(2l − 1)

4π

(l − m − 1)!

(l + m − 1)!
(sin θ)m e−imφ

×
⎧⎨
⎩

(l−m)/2∑
ki=0

[
(−1)ki

(2l − 2ki)!(cos θ)(l−2ki−m)

2l (l − 2ki − m)!(l − ki)!ki!

]⎫⎬
⎭

×
⎧⎨
⎩

(l−m−1)/2∑
kf =0

[
(−1)kf

(2l − 2kf − 2)!(cos θ)(l−2kf −m−1)

2l−1(l − 2kf − m − 1)!(l − kf − 1)!kf !

]⎫⎬
⎭

× cos θ sin θ

)
dθ dφ. (14)

The product of the summations may be then combined into a double summation, the powers of
sin θ and cos θ collected, the integrals brought inside the summation and the result simplified
to give⎛
⎝ 1

4π

√
(2l + 1)(2l − 1)(l − m)!(l − m − 1)!

(l + m)!(l + m − 1)!

⎧⎨
⎩

(l−m−1)/2∑
kf =0

⎛
⎝(l−m)/2∑

ki=0

×
[

(−1)ki+kf (2l − 2ki)!

22l−1ki!kf !(l − ki)!

(2l − 2kf − 2)!

(l − 2kf − m − 1)!(l − 2ki − m)!(l − kf − 1)!

×
∫ 2π

0

∫ π

0
(sin θ)2m+1(cos θ)(2l−2ki−2kf −2m) dθ dφ

]⎞⎠
⎫⎬
⎭
⎞
⎠ . (15)

The integral over φ is just 2π and the integrals over θ are of the form
∫ π

0 (sin θ)2r+1(cos θ)2s dθ

with r and s being the arbitrary positive integers. These may be evaluated using the recurrence
relation ∫ π

0
(sin θ)2r+1(cos θ)2s dθ = 2s − 1

2r + 2s + 1

∫ π

0
(sin θ)2r+1(cos θ)2s−2 dθ

and the fact that∫ π

0
(sin θ)2r+1 dθ = − π3/2 csc(π r)

�(−r)�
(

3
2 + r

) =
√

π �(1 + r)

�
(

3
2 + r

) (for the positive integer r)

to give∫ π

0
(sin θ)2r+1(cos θ)2s dθ =

(
2s − 1

2r + 2s + 1

)(
2s − 3

2r + 2s − 1

)
. . .

(
1

2r + 3

)∫ π

0
(sin θ)2r+1 dθ

= 22r (2s)!r!(2r + 1)!(r + s)!

(1/2 + r)(2r)!s!(2r + 2s + 1)!
. (16)

9
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We set r = m and s = l − ki − kf − m in (16), substitute these into each of the expanded and
collected product sum terms (sin θ)2m+1(cos θ)2l−2ki−2kf −2m of (15).

This yields a final expression for Iθφz, so that the angular integrals for this case may be
finally reduced to

Iθφx = 0 Iθφy = 0

Iθφz =
(

22m−2l+1m!

√
(2l + 1)(2l − 1)(l − m)!(l − m − 1)!

(l + m)!(l + m − 1)!

×
⎧⎨
⎩

(l−m−1)/2∑
kf =0

⎛
⎝(l−m)/2∑

ki=0

[
(−1)ki+kf (2l − 2ki)!(2l − 2kf − 2)!(l − ki − kf )!

ki!kf !(l − kf − 1)!(l − ki)!(2l − 2ki − 2kf + 1)!

× (2l − 2m − 2ki − 2kf )!

(l − 2kf − m − 1)!(l − 2ki − m)!(l − ki − kf − m)!

]⎞⎠
⎫⎬
⎭
⎞
⎠ . (17)

Similar alternative expressions can be obtained when the quantum numbers l and m are
odd or combinations of odd and even, or when the final state is l + 1 rather than l − 1.
Likewise, expressions for Iθφx and Iθφy can be obtained for the cases where �m = ±1 and
in this way explicit expressions for all dipole transition angular integral components may be
obtained.

The correctness and exactness of (17) can be verified by comparing cases where the values
of l and m are small enough to also allow alternative calculation by direct integration. For
example for l = 30 m = 6, both integration and (17) yield the exact result of 12

√
6/3599.

The derivation of the radial integral, IR ≡ ∫∞
0 R∗

nf,lf (r) Rni,li (r) r3 dr , is somewhat more
involved but, unlike the angular integrals, only takes one of two possible forms depending on
the angular momentum l + l or l − 1 of the final state. We present here the latter case taking
the initial state as (ni, li) ≡ (ni, li = ni − p) where p = ni − li as defined earlier, and the
final state as (nf , lf ) ≡ (nf , lf = li − 1 = ni − p − 1). The initial and final states written
in terms of p then respectively become, using (4) and (5),

Rni,l =
((

2

nib0

)3 (
(p − 1)!(2ni − p)!

2ni

)) 1
2

exp

(
− r

nib0

)(
2r

nib0

)(ni−p)

×
⎛
⎝(p−1)∑

ki=0

(−1)ki
(

2r
nib0

)ki

(p − ki − 1)!(2ni − 2p + ki + 1)!ki!

⎞
⎠ and

Rnf ,l−1 =
((

2

nf b0

)3 (
(nf − ni + p)!(ni + nf − p − 1)!

2nf

)) 1
2

(18)

×
⎛
⎝nf −ni+p∑

kf =0

(−1)kf
(

2r
nf b0

)kf

(nf − ni + p − kf )!(2ni − 2p + kf − 1)!kf !

⎞
⎠

× exp

(
− r

nf b0

)(
2r

nf b0

)(ni−p−1)

.

10
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IR can be then written as

IR = C ×
nf +p−ni∑

kf =0

⎛
⎜⎝p−1∑

ki=0

((− 2
b0

)ki+kf ∫∞
0 exp

[− ni+nf

ninf b0
r
]
r2ni−2p+ki+kf +2 dr

n
ki

i n
kf

f ki!kf !(p − ki − 1)!(nf + p − ni − kf )!

× 1

(2ni − 2p + kf − 1)!(2ni − 2p + ki + 1)!

)⎞⎠ (19)

where

C =
(

2

b0

)2ni−2p+2
((p − 1)!(2ni − p)!(nf + p − ni)!(ni + nf − p − 1)!)

1
2

2(ni)ni−p−2(nf )ni−p+1
.

Since∫ ∞

0
exp

[
−ni + nf

ninf b0
r

]
r2ni−2p+ki+kf +2 dr

= (2(ni − p) + ki + kf + 2)!

(
b0 ni nf

ni + nf

)(ki+kf +2ni−2p+3)

,

the expression for IR

(≡ ∫∞
0 R∗

nf,lf (r) Rni,li (r) r3 dr
)

can therefore finally be written as

IR = 22ni−2p+1nin
2
f b0

(ni + nf )3

(
ninf

(ni + nf )2

)ni−p

×((p − 1)!(2ni − p)!(nf + p − ni)!(ni + nf − p − 1)!)
1
2

×
nf +p−ni∑

kf =0

⎛
⎝p−1∑

ki=0

(
(−2ni)

kf (−2nf )ki

(ni + nf )ki+kf (p − ki − 1)!ki!(nf + p − ni − kf )!kf !

× (2ni − 2p + ki + kf + 2)!

(2ni − 2p + kf − 1)!(2ni − 2p + ki + 1)!

)⎞⎠ . (20)

Again the exactness of (20) may be checked by substituting low values of ni , nf

and p directly and comparing these with results obtained by the direct integration of∫∞
0 R∗

nf,lf (r) Rni,li (r) r3 dr . For example, if ni = 6, nf = 3 and p = 4 (so that li = 2

and lf = 1) both expressions give a value of 4096
√

70 b0/19 683.
Combining (7), (17) and (20) then enables any state-to-state transition rate to be calculated

for �l = −1 and �m = 0. As a check on the validity of these expressions, they may be
easily converted to their equivalent atomic counterparts. For example the decay rate for the
ni = 2, li = 1 → nf = 1, lf = 0 transition in hydrogen may be calculated using the
present treatment by substituting parameter values relevant to this atomic transition yielding
6.2 × 108 s−1 compared to literature values [10, 11] of 6.3 × 108 s−1. Decay of the ‘Rydberg’
atomic hydrogen ni = 10, li = 0 and ni = 10, li = 1 states are more complicated because
they involve addition of rates over a greater number of decay channels and also transitions
involving other �l and �m values (�l = ±1 and �m = 0,±1). Using equations (7), (17) and
(20) and other equivalent expressions the present treatment yields lifetimes for the hydrogen

11
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Rydberg states ni = 10, li = 0 and ni = 10, li = 1 of 2.0 and 0.19 μs compared with the
values obtained from [12] of 2.1 and 0.21 μs, respectively.

3. Dipole matrix element and transition rate approximations for transitions where at

least one state has p = 1

The interesting states are those that have very low decay rates and that are weakly interacting
as these would be the ones most likely to exist naturally. We are concerned therefore to know
upper limits on the decay and interaction rates of particular types of transitions. In the case of
dipole decay, these depend on the values of 
if and ωif in (7). The value of IR is critical in
determining the decay rate because it depends on r that can become very large. The smallness
of angular components of 
if therefore becomes an important consideration in limiting the
transition rate only if IR is not small. Consequently, it is the value of IR that we wish to
primarily investigate here because of its dramatic effect on 
if and on the resulting transition
rates.

No approximations have been made in the derivation of IR in (16) and (20) so that these
equations enable the possibility of obtaining tractable expressions for the radial component
of the dipole matrix elements corresponding to any dipole transitions within the conditions
set out earlier in this paper. For example substituting nf = ni − 1 and p = 1 into (20)
gives an explicit expression for the radial component of transitions of the type B to A
((ni = ni, l = ni − 1) → (nf = ni − 1, l = ni − 2)) shown in figure 1 as

∫ ∞

0
R∗

nf,lf (r) r3 Rni,li (r) dr = 22ni b0

(
ni (ni − 1)

(2ni − 1)2

)ni+1√
(2ni − 1)3(2ni − 2), (21)

which, for large ni , becomes ≈b0n
2
i . Again the agreement of the formulae for these low-p-to-

low-p state transitions may be verified when the values of n, l and p are sufficiently low for IR

to be manageable by direct integration of the polynomial representations.
A similar dependence on b0n

2
i exists for adjacent state-to-state transitions on the p = 2

diagonal and hence yields radiative decay rates essentially the same as that for transitions of
type B to A. It can be shown using (20) that whenever transitions take place between two
‘p-turning point’ Laguerre eigenfunctions, that is transitions that take place along the same
p-diagonal so that ni → ni − 1 and li → li − 1, then the decay rate is b0n

2
i provided ni � p.

Transitions like C to A of figure 1 involve overlap integrals where the radial component
wave functions have very different shapes (A is a 1-turning point function while C is a
2-turning point function). As a result, it would be expected in this case that the radial part of
the overlap integral would be much smaller than the B to A type transitions. This is indeed
the case and (20) gives∫ ∞

0
R∗

nf,lf (r) r3 Rni,li (r) dr = 22ni−2b0

(
ni (ni − 2)

(2ni − 2)2

)ni √
(2ni − 2)(2ni − 3)(2ni − 4),

(22)

which reduces to the approximate value of b0n
3
2
i

/√
2 again provided ni � p.

A general formula for the value of IR may be obtained for a more general transition
such as D to A of figure 1, which originates from an arbitrary p-turning point radial
Laguerre polynomial state D (ni, li = ni − p) and ends on a 1-turning point state like A
(nf = ni − p, lf = nf − 1, lying on the left diagonal). In general for such transitions it is
possible for p to be much larger than 1 (but still much less than ni). It may be shown that in

12
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this case, (20) reduces to a single summation

IR = 22ni−2p+1nin
2
f b0

(ni + nf )3

(
ninf

(ni + nf )2

)ni−p

× ((p − 1)!(2ni − p)!(nf + p − ni)!(ni + nf − p − 1)!)
1
2

×
p−1∑
ki=0

(
(2ni − 2p + ki + 2)!(−2nf )ki

(ni + nf )ki (p − ki − 1)!(2ni − 2p + ki + 1)!ki!(nf + p − ni)!(2ni − 2p − 1)!

)
,

(23)

which may be written as

b0

2

√
(p − 1)!

(
ninf

(ni + nf )2

)(nf +1)

22ni−1

(
p∏

i=0

(ni + nf − i)
1
2

)

×
(

p∑
i=1

(
(−1)i−1

(
nf

(ni + nf )

)i 2i−2p+2(2nf + i + 1)

(i − 1)!(p − i)!

))
. (24)

Carrying out the summation over i and simplifying the product, (24) becomes

b0

(
4ninf

(ni + nf )2

)(nf +1)
pp−2ninf

(ni + nf )p

√
(ni + nf )!

(p − 1)!(2nf − 1)!
, (25)

which is so far an exact expression.
Using Stirling’s formula one excellent working approximation to (25) even when p is

relatively small is

b0 pp/2n
9/4
f (2nf + 2p)nf +2(2nf + p + 1)nf +p/2+1/4

(e2πp7)1/4(2nf + p)2+2nf +p

(or often more usefully written in its log form

exp

(
log

(
b0 pp/2n

9/4
f (2nf + 2p)2(2nf + p + 1)p/2+1/4

(e2πp7)1/4(2nf + p)2+p

)

+ nf log

(
(2nf + 2p)(2nf + p + 1)

(2nf + p)2

))
(26)

to avoid terms of order n
nf

f ).
A simpler but more approximate expression can be used for calculations that involve

large values of ni and p, provided ni � p � 1. Then ni ≈ nf (= ni − p), and using
limn→∞ ((2n − p + 1)/(2n − 2p))n = exp ((p + 1)/2) enables (26) to be simplified to

IR = b0ni

(
2

πp

) 1
4 ( e

2

) p

2

(
p

ni

) p−3
2

. (27)

The usefulness of the approximate equations (26) and (27) in determining IR =∫∞
0 R∗

nf,lf (r) r3Rni,li (r) dr may be tested by comparison with the direct integral using lower
values for ni and p and this is shown in table 1 in units of b0.

The approximations (26) and (27) highlight the rapidity with which IR =∫∞
0 R∗

nf,lf (r) r3Rni,li (r) dr approaches zero as p increases, because of the factor
(

p

ni

) p−3
2 .

Table 2 provides values of IR for a range of values of p and ni illustrating this effect.
The overwhelming smallness of IR and the resulting overwhelming smallness of the dipole
matrix element 
if mean that state-to-state decay rates which start on any large-p diagonals

13
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Table 1. Value of IR = ∫∞
0 R∗

nf,lf (r) r3Rni,li (r) dr obtained by (a) direct integration, (b) using
equation (26) and (c) using equation (27), for an initial state ni , pi and final state ending on a
pf = 1 diagonal of figure 1.

Radial overlap Value using Value using
ni p integral equation (26) equation (27)

102 5 5.76 5.80 6.43
102 10 5.58 × 10−2 5.60 × 10−2 7.37 × 10−2

102 50 6.88 × 10−5 6.89 × 10−5 6.08 × 10−3

3 × 104 5 6.38 6.43 6.43
3 × 104 10 4.70 × 10−8 4.72 × 10−8 4.73 × 10−8

3 × 104 50 1.10 × 10−58 1.10 × 10−58 1.12 × 10−58

Table 2. Value of IR = ∫∞
0 R∗

nf,lf (r) r3Rni,li (r) dr obtained using equation (26), for an initial
‘deep’ state D (quantum parameters ni , pi � 1) that ends on the p = 1 diagonal of figure 1.∫∞

0 R∗
nf,lf (r) r3Rni,li (r) dr

ni pi (in units of b0)

1000 1 ∼106

1000 5 ∼6
1000 20 ∼3 × 10−11

1000 100 ∼10−40

1030 1 ∼1060

1030 5 ∼6
1030 10 ∼10−71

1030 1020 ∼10−5×1020

1030 1026 ∼10−2×1026

8 × 1033 5 × 1031 ∼10−5×1031

and end on the p = 1 diagonal (or as it turns out on any low-p diagonal) are negligibly small,
even despite sizeable values of ni − nf and the cubic dependence of Ai,f on ωif . This is an
extremely interesting result since it means that all the high-n, low-p eigenstates in gravitational
wells discussed here exhibit the unusual property of having extremely long lifetimes. As a
consequence they will, despite their high-valued quantum parameters, also exhibit inherent
long-term stability and an inability to coalesce by radiative decay or interact strongly with
other electromagnetic radiation.

4. Conclusion

Exact general expressions have been determined for the transition probability per unit time
of the electromagnetic decay of charged particles in gravitational eigenstates for any dipole-
allowed transitions in weak gravity. Additionally tractable approximations have been obtained
for certain specific transitions involving the interesting set of high-n, low-p eigenstates,
including a general one for transitions ending on the p = 1 diagonal. The generality of
these types of formulae also give them application in the study of other large-n quantum
systems such as Rydberg states in atomic systems. The most significant conclusion to come
out of this present study is that the very high-n, low-p gravitational eigenstates have extremely

14
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long lifetimes (potentially many times the age of the universe in the situations considered
here).

The speculation was raised in the introduction that gravitational eigenstates might exist
naturally elsewhere in the universe. Small structures in low-central-mass wells are generally
weakly bound (as demonstrated in [1, 2]), so that if well-bound eigenstructures exist they are
likely to be of macroscopic size. This is not a problem in itself, but it is hard to see how
these structures could have formed in all but the earliest times in cosmic history since it can
be shown [4] that the probability for a localized object of any reasonable mass decaying into
an eigenstate in any time is negligible. The formation of such structures would require the
existence of strong gravitational potential wells at a time in universal history when the global
particle density over the well region was sufficiently high and the temperature sufficiently
low to enable decay into eigenstates, analogous to plasma recombination. Indeed if such
conditions were met it would be expected that eigenstates would form and ultimately populate
the longest lived low-p levels. It turns out that such conditions are possible at certain critical
times in universal history and the formation mechanisms associated with these structures will
be the subject of a later paper. It is clear however that the resulting stability of particles
occupying eigenstates would mean that if such a structure formed, it would be stable and
have an inability to gravitationally collapse. It is also expected that it would not intrinsically
emit or scatter radiation to any significant degree and therefore be essentially invisible with
respect to external electromagnetic radiation [4]. This latter point will be discussed further in
a companion paper.

The approximation for calculating the dipole transition rate for those transitions involving
p = 1 is a useful one, but it is clearly necessary to develop further approximate techniques
for the calculation of other dipole transitions with more generalized values of p. In this
regard, the derivations in the present paper continue to have limitations. In the case of the
gravitationally bound systems with quantum parameters n, l � 1030 for example, the direct
use of (20) is limited because of the very large factorial functions (despite the use of Stirling’s
approximation) and also because it involves summations with unrealistically large number of
terms. Different approaches will be needed to deal with these types of transitions, where both
the initial and final p values of the states are large.

Other areas requiring more detailed examination are those of multi-pole decay and
transitions induced by other types of interactions such as particle collisions. These
investigations will be the subject of later papers. It would appear however from this initial
work that the high-n, low-p gravitational eigenstates are particularly interesting to study
theoretically because of their extremely long lifetimes and the implications this has on their
expected behaviour and appearance.
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